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Abstract
Many protocols, like HTTP, FTP, POP3, and SMTP, were origi-
nally designed as synchronous plaintext protocols – commands
and data are sent in the clear, and the client waits for the response
to a pending request before sending the next one. Later, two main
solutions were introduced to retrofit these protocols with TLS
protection. (1) Implicit TLS: Designate a new, well-known TCP
port for each protocol-over-TLS, and start with TLS immediately.
(2) Opportunistic TLS: Keep the original well-known port and start
with the plaintext protocol, then switch to TLS in response to a
command like STARTTLS.

In this work, we present a novel weakness in the way TLS is
integrated into popular application layer protocols through implicit
and opportunistic TLS. This weakness breaks authentication, even
in modern TLS implementations if both implicit TLS and oppor-
tunistic TLS are supported at the same time. This authentication
flaw can then be utilized to influence the exchanged messages after
the TLS handshake from a pure MitM position.In contrast to previ-
ous attacks on opportunistic TLS, this attack class does not rely on
bugs in the implementations and only requires one of the peers to
support opportunistic TLS.

We analyze popular application layer protocols that support
opportunistic TLS regarding their vulnerability to the attack. To
demonstrate the practical impact of the attack, we analyze exploita-
tion techniques for HTTP (RFC 2817) in detail, and show four
different exploit directions. To estimate the impact of the attack on
deployed servers, we conducted a series of IPv4-wide scans over
multiple protocols and ports to check for support of opportunistic
TLS.We found that support for opportunistic TLS is still widespread
for many application protocols, with over 3 million servers support-
ing both, implicit and opportunistic TLS at the same time. In the
case of HTTP, we found 20,121 servers that support opportunistic
HTTP across 35 ports, with 2,268 of these servers also supporting
HTTPS and 539 using the same domain names for implicit HTTPS,
presenting an exploitable scenario.

Keywords
TLS, network protocol attacks, desynchronization, HTTP

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 3

dog

Browser:443 Server:80Attacker

HTTP/1.1 101 Switching Protocols
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

GET /dog HTTP/1.1
Host: server.com
Upgrade: TLS/1.0

GET /cat HTTP/1.1
Host: server.com

Client Hello

TLS Handshake

Figure 1: A sketch of the Opossum attack on HTTPS. Before
theClientHello of the browser reaches the server, the attacker
establishes an HTTP connection and performs a GET request
for dog, including a TLS upgrade header. The attacker then
tunnels the browser’s TLS messages through their HTTP
connection. After the handshake, the client performs its GET
request, which the attacker does not forward. At the same
time, the server answers the request from the attacker, which
the client then misinterprets as the answer to their request.

1 Introduction
Some of the earliest Internet protocols consist of simple, synchro-
nous, text-based, plaintext communication. These protocols are still
in widespread use today. Examples include HTTP up to version 1.1,
FTP, POP3, SMTP, and LDAP. Since corresponding request-response
pairs in these protocols are not labeled by a unique identifier, these
protocols rely on responses arriving in the same order in which the
requests were issued. Typically, these protocols are designed such
that a requesting client either waits for a response before sending
the next request (e.g., HTTP 1.0 and SMTP) or sends a sequence of
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requests and expects the responses to arrive in the same order (e.g.,
HTTP 1.1 request pipelining and SMTP with command pipelining
extension).

As a reliable network connection, TCP guarantees this syn-
chronicity in each direction individually, even when random trans-
mission errors occur. However, a Man-in-the-Middle (MitM) at-
tacker can easily delete, modify, inject, or reorder responses by
buffering data and adapting sequence numbers in the TCP head-
ers. To prevent such attacks, SSL/TLS [21–23, 36, 39, 60, 61] was
introduced. In general, there are two ways to integrate TLS into an
existing application: implicit and opportunistic TLS.

Implicit TLS. In an implicit TLS connection, the TLS channel is
established before any application data is transmitted. This, again,
can be done in two ways. Either a new, well-known TCP port can
be reserved for the protocol-over-TLS variant (e.g., HTTPS/443 for
HTTP/80). Or, for protocols where the client sends the first message,
it is possible to use the protocol in its plain and encrypted variants
on the same port: The server has to distinguish whether the first
byte(s) sent by a client is plaintext or the start of a TLS ClientHello.
This is feasible in HTTP, as employed by CUPS, because a plaintext
HTTP request starts with an ASCII letter, while a ClientHello will
begin with the binary byte 0x16 (record layer type set to “hand-
shake”) [23, 61].

Opportunistic TLS. With opportunistic TLS, a TCP connection to
the well-known TCP port of the application protocol is established
first, and application data is sent. After this, establishing a secure
TLS channel is requested within the application protocol. The ap-
plication protocol is paused while the TLS handshake takes place
over the established TCP connection, and it is resumed within the
TLS record layer once the handshake is complete. Opportunistic
TLS is backward compatible with deployed clients and firewalls as
it reuses the same port as an insecure connection, and a connection
can also succeed if the client or server does not support TLS.

The support for opportunistic TLS varies heavily based on the
respective protocol and community using it. For SMTP, oppor-
tunistic TLS was introduced on a new port 587 [48], replacing the
standard port 25, while implicit TLS was initially standardized on
port 465 but later deprecated [40] in favor of opportunistic TLS. For
IMAP, opportunistic TLS was added to the standard port 143 [40],
and implicit TLS was standardized on the new port 993 [51]. For
POP3, opportunistic TLS was added to the standard port 110 [40],
and implicit TLS was standardized on the new port 995 [51]. For
the opportunistic TLS variants of SMTP, IMAP, and POP3, TLS is
activated using the STARTTLS command. For FTP, the only offi-
cial method is opportunistic TLS, standardized in RFC 4217 [35],
although implicit TLS is still supported in many applications, typi-
cally on port 990 [18]. Within these email and FTP protocols, oppor-
tunistic TLS is still widespread, with millions of servers supporting
it [55].

In the context of HTTP(S) [59], implicit TLS is the norm (port
443). Opportunistic TLS for HTTP is specified in RFC 2817 [43],
and is implemented in some web servers like Apache 2. Although
it was never formally deprecated, it did not get adopted by browser

vendors,1 so its use on the World Wide Web is expected to be a
rare occurrence. However, it was adopted by the Internet Printing
Protocol (IPP, RFC 8010 [69]), XCAP (RFC 4825 [64]), and recom-
mended for DHCPv6 network boot (RFC 5970 [41]). To the best of
our knowledge, the usage and distribution of opportunistic TLS
variants beyond FTP and email protocols have never been analyzed
in an academic context.

Novel Authentication Weakness. In this work, we demonstrate
that supporting both opportunistic TLS and implicit TLS, even if
both are supported only by the client or only by the server, exposes
an authentication weakness. An attacker can misuse this weakness
to influence the messages exchanged on the application layer from
a pure MitM position, ultimately undermining the fundamental TLS
security guarantee of integrity protection. The attacker can com-
promise the integrity of the secure channel across all TLS versions,
regardless of all known countermeasures in place.

This weakness can then be used by an attacker to perform desyn-
chronization in popular application-layer protocols. For HTTP, an
attacker can abuse the flaw to inject a chosen (malicious) request,
and the resulting (malicious) response will be delivered to the web
browser within the secure TLS channel, which the browser inter-
prets as the response to its request. All future request/response
message pairs will remain unsynchronized. Given the nature of
the weakness, only one communication peer needs to support both
opportunistic and implicit TLS. In the context of HTTP, this means
that even though no single web browser supports opportunistic
TLS, the attack still works against HTTPS connections with HTTP
servers that do.

Example for a Desynchronization Attack Against HTTPS. We out-
line the concrete Opossum attack against HTTPS in Figure 1. Note
that in HTTP, the client can ask for a connection to be upgraded to
opportunistic TLS by adding an extra upgrade header to its first,
unprotected, plaintext request (see Figure 2 in subsection 2.1). To
perform the attack on HTTP, the attacker waits for a victim client
to initiate a server connection using implicit TLS. The attacker
then opens a connection to the plaintext port of the server and
establishes a TLS session using opportunistic TLS. The server now
expects a ClientHello message, which the attacker forwards from
the victim client to the server. The attacker forwards all further
messages between the client and server, allowing them to perform
a TLS handshake. After the handshake, both peers attempt to speak
the application protocol over TLS, but in different variants: The
client assumes the protocol uses implicit TLS and no messages were
exchanged before the handshake. The server, however, assumes
that opportunistic TLS is used and that messages were exchanged
before the handshake. This creates a situation where both parties
follow a slightly different application layer protocol. In the oppor-
tunistic variant, the server is the first to send a message after the
TLS handshake (as a response to the upgrade request), while in the
implicit variant, the client is the first to send a message. As a result,
both parties attempt to send a message simultaneously, which the
attacker can exploit by rearranging the response from the server to

1https://bugzilla.mozilla.org/show_bug.cgi?id=276813, https://issues.chromium.org/
issues/41154248
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the attacker as a response to the client’s request. The victim client
misinterprets the response as belonging to its request.

In the example in Figure 1, the client interprets dog to be the
response to the requested /cat. Although this example is specific to
the case of HTTPS, where it has particularly severe consequences,
we will demonstrate that, similarly, for many other protocols, the
parties can also become desynchronized. After desynchronization,
they disagree on which party sends the first message, as the applica-
tion layer protocols of both variants do not exactly match. While we
expect these vulnerabilities to be difficult to exploit in non-HTTP
protocols, the attack breaks formal channel integrity assumptions
in a similar way to the ALPACA attack [18].

HTTPS Desynchronization Attacks. In the context of HTTPS, we
show that desynchronization leads to four attack classes.

• Resource Confusion: The attacker tricks the web server
to return the content of a different resource to the browser’s
request. For example, the attacker can replace an imagewith
another image on the same server.

• Session Fixation: The attacker tricks the client into re-
ceiving the session cookie of the attacker, logging the user
into the attacker’s account.

• Reflected XSS: The attacker leverages a server-side re-
flected self-XSS vulnerability to escalate it into a regular
reflected XSS.

• Software-Specific Issues: Implementation issues in the
TLS upgrade mechanism allow an attacker to leak request
headers, such as cookies.

We evaluate the prevalence of the Opossum attack by performing
IPv4-wide scans for HTTP, FTP, IMAP, POP3, and SMTP regarding
opportunistic and implicit TLS support. In total, we identified over
3 million hosts that support opportunistic TLS alongside implicit
TLS on vulnerable application-layer protocols, thereby enabling
the attack scenario. While we do not show exploits for all affected
protocols, the Opossum attack is yet another attack targeting op-
portunistic TLS, highlighting the risk this feature introduced. We,
therefore, join previous conclusions by Poddebniak et al. [55] and
recommend switching away from opportunistic TLS to implicit TLS
where possible.

Contributions. Our main contributions are as follows:
• We show a novel authentication weakness, found in many

opportunistic TLS standards, that allows the attacker to
influence the exchanged application data messages.

• We demonstrate that this weakness can be exploited to
break synchronization assumptions of the application-layer
protocols.

• We analyze the impact of the discovered vulnerability re-
garding HTTPS in detail.

• We evaluate the impact of the vulnerability on 43 ports
across five protocols and estimate the number of affected
services.

Ethical Considerations and Responsible Disclosure. Our scans re-
spected the rules for Internet-wide scanning proposed byDurumeric
et al. [28]. We established rDNS entries and a website that indicated
the benign nature of our scans and offered the possibility of opting
out of our study.

Due to the sheer number of vulnerable hosts, we responsibly dis-
closed our findings to our local CERT. We additionally approached
the IETF and advised them to deprecate the affected standards. Fi-
nally, we contacted popular software products for which we could
identify concrete exploits and advised them to remove the feature.
In response to our disclosure, Cyrus IMAP changed its defaults to
implicit TLS and Apache2 removed support for RFC 2817.

Artifacts. We publish our PoC exploits for HTTPS and our devel-
oped PoC desynchronizations for the other susceptible protocols at
https://github.com/kunte0/Opossum-Attack-PoC.

2 Background
The Transport Layer Security (TLS) protocol, formerly known as
SSL, is one of the most important cryptographic protocols on the
Internet. TLS establishes a secure connection between a client and
a server that provides confidentiality, integrity, and authentication
for the transmitted data. The TLS protocol exists in many versions;
the most recent one is TLS 1.3 [61]. To establish a TLS connec-
tion, both parties first perform a handshake, which starts with the
client sending a ClientHello message announcing its TLS version
and supported cryptographic parameters. The server selects from
the client’s offered choices and responds with a batch of messages,
starting with the ServerHello that announces the chosen parame-
ters. Along with the ServerHello, the server sends a public key for
a Diffie-Hellman key exchange, a certificate declaring its identity,
and a signature to be verified using the certificate to prove its iden-
tity. Once both parties shared their public key, they transition into
the encrypted state. Finally, each party sends a Finished message
containing a cryptographic checksum of their session transcript to
ensure the integrity of the exchanged handshake messages. Subse-
quently, both parties may send application data.

Channel Security. After a TLS handshake, the client and server
have established two separate secure channels: one channel is used
for client-to-server messages, and one channel is used for server-
to-client messages. The channels use symmetric encryption and
MAC authentication, preventing MitM attacks such as injection,
deletion, modification, and reordering of messages. While Smyth
and Porenti [68], and Bhargavan et al. [17] have shown that trun-
cation attacks are still possible, they can be detected at the end of a
connection by the lack of a terminating alert message (close_notify).

Opportunistic TLS. Many application layer protocols were up-
graded in hindsight to support TLS by switching to encryption in
the middle of the execution. This allowed users to deploy the secure
version and the plaintext version on the same port. To perform
the upgrade, peers can usually send a specific command to trigger
the upgrade. Once upgrading is agreed upon, the client starts the
TLS handshake on the existing TCP connection. This upgrading
mechanism is called opportunistic TLS, or STARTTLS. Many pop-
ular protocols support opportunistic TLS, such as HTTP [33, 43],
FTP [35, 56], MySQL [12], PostgreSQL [14], NBD [57], SMTP [40,
44, 48], LMTP [52], IMAP [20, 51], POP3 [50, 51], NNTP [29, 31, 49],
LDAP [66], Managed Sieve [46] and XMPP [65].

Opportunistic TLS is (intentionally) vulnerable to MitM down-
grade attacks, as an attacker may convince both sides that TLS is
not supported to keep the connection as plaintext. While this was
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an acceptable trade-off in the early days of adoption, modern clients
and sometimes servers may refuse to use the connection for any-
thing security-sensitive before the connection has been upgraded
to TLS. In this paper, we assume that all implementations use this
strict interpretation and will not leak any secrets to an attacker if
TLS is not supported.

2.1 HTTP
The Hypertext Transfer Protocol (HTTP) was designed as a plain-
text protocol for transferring hypertext documents across the In-
ternet. This fundamental design choice, while enabling human
readability and easier debugging, introduces several security impli-
cations. HTTP messages, including headers and payload data, are
transmitted as plaintext ASCII, making them susceptible to inter-
ception and manipulation by malicious actors positioned between
client and server.

World-Wide Web. The most important application of HTTP is
exchanging HTML documents in the World-Wide Web (WWW).
HTML introduced powerful web features like JavaScript, which
allows servers to send Turing-complete code to the browser, which
then executes this code. To limit the abilities of a malicious server,
web browsers use the Same-Origin-Policy (SOP). In this model, the
scope of what can be accessed through JavaScript is bound by the
protocol, port, and domain of the server.

To execute JavaScript inWeb applications, attackers can leverage
Cross-Site Scripting (XSS) attacks. In an XSS attack, the attacker
injects malicious scripts directly into a trusted website. The attack
exploits the browser’s inability to distinguish between legitimate
and malicious script sources. If an attacker can introduce malicious
JavaScript into the context of a trusted website, the attacker can
then use JavaScript to potentially steal session tokens, cookies, or
other sensitive data.

HTTPS. HTTPS is an extension of HTTP that uses implicit TLS
instead of plaintext HTTP to secure its connections. While nowa-
days, the overhead of this additional encryption is often negligible,
in the mid-to-late 1990s, when it was first adopted, the additional
computation time was a real consideration. The deployment of
HTTPS required opening a dedicated port, and many websites
served their content in mixed setups, where only some parts of the
website were protected by TLS, while others were not. This caused
many websites to support both HTTP and HTTPS on separate
ports. Because support for HTTPS was not universal, users often
initiated a connection to a website using HTTP and then switched
to HTTPS by following a redirect from the server (e.g., as part of a
login process).

Upgrading to TLS Within HTTP/1.1. In the early days of HTTPS
adoption, RFC 2817 [43] was proposed, which uses opportunistic
encryption to upgrade an HTTP connection to HTTPS, reusing the
same port without establishing a new TCP connection. To do this,
the upgrade header was introduced (see Figure 2). A client request-
ing a resource can include the upgrade header
(Upgrade: TLS/version), requesting the server to optionally serve
the response over TLS. To accept the request, the server answers
with an HTTP status code 101 Switching Protocols and an ap-
propriate upgrade header. Once a client receives this status code

Browser Server
GET / HTTP/1.1
Host: server.com
Upgrade: TLS/1.0

HTTP/1.1 101 Switching Protocols
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 12
Hello, World

TLS Handshake

Figure 2: Message flow of an HTTP connection with TLS up-
grade. The client proposes to upgrade the connection. The
server can accept the upgrade request by sending an HTTP
response code 101 Switching Protocols. The client then ini-
tiates a TLS handshake. After the TLS handshake, the server
sends the requested resource secured over the established
TLS channel.

with the upgrade header, the TLS handshake starts. After the hand-
shake, the server sends the initially requested resource protected by
TLS. Notably, the TLS version in the upgrade request is empirically
ignored, as TLS version negotiation is done through the handshake
protocol instead.

The HTTP-to-TLS upgrade was only envisioned as opportunistic
encryption, meaning it should only protect against passive attackers.
An active attacker can remove the upgrade header from the client’s
request, causing the connection to stay unencrypted. Even if the
server enforces that the connection is secured via TLS, a MitM
attacker can act as a translator between the browser and the server,
breaking the security guarantees.

The HTTP-to-TLS upgrade feature was never widely supported
by web browsers but was adopted by the Internet Printing Protocol
(RFC 8010 [69]), XCAP (RFC 4825 [64]), and recommended for
DHCPv6 network boot (RFC 5970 [41]).

2.2 Protocol Negotiation
ALPN Extension. The TLS protocol introduced an extension, the

Application Layer Protocol Negotiation extension (ALPN) [37], to
multiplex different protocols on the same port. With the ALPN
extension, the client can send the application layer protocols it is
willing to speak after the TLS handshake in its ClientHello, and the
server can then respond with the selected application layer protocol
in its ServerHello message.

ALPACA Attack. The ALPACA attack [18] exploits a weakness
in the authentication mechanism of TLS to confuse peers with
which server endpoint they are talking to. Since TLS does not
protect the port numbers or IP addresses, an attacker can forward
the TLS messages from the client intended for IP and port to a
server running on a different IP and port, as long as the certificate
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that the server provides is also valid for the other server. This can
result in a scenario where the client and the server are speaking
different application layer protocols, which can again result in the
loss of sensitive information. The authors of the ALPACA attack
proposed strict ALPN verification as a countermeasure, which was
later adopted by RFC 9325 [67]. This means that if the server and
the client disagree on an application layer protocol through ALPN,
the server should terminate the connection.

3 Opossum Attack
In this work, we show a new weakness in the way the TLS protocol
is integrated into many popular application layer protocols, by
supporting both implicit and opportunistic TLS at the same time.
This weakness formally breaks authentication and channel integrity
guarantees of TLS. We will then show that this weakness is actually
exploitable in a new attack called Opossum attack, to desynchronize
the communication in many popular application layer protocols.

3.1 Model
Attacker Model. The Opossum attack considers a MitM attacker

scenario where the attacker can read and manipulate all transmitted
data at the TCP level. We assume the attacker cannot break the
cryptographic primitives used in the TLS connection. The attack
does not rely on software bugs, and all peers behave standard-
compliant. The attack does not rely on a specific TLS version and
works on all current TLS versions, even when client authentication
is enabled.

Authentication Weakness. The core insight from the ALPACA at-
tack was that TLS certificates do not contain enough information to
uniquely identify a server. In the context of HTTP, identities on the
Internet typically use the web origin. A web origin is the combina-
tion of <protocol, domain, port>. However, TLS does not protect the
intended web origin, as it has no means to securely communicate
the client’s intent to the server. An application server, therefore,
cannot distinguish between requests sent to <http, domain, 80> and
requests sent to <https, domain, 443>, and will therefore perform
the handshake with the client. For example, if two different applica-
tion servers are hosted on the same domain name, an attacker can
redirect traffic from one server to the other without either party
noticing that an attack has occurred. The proposed countermea-
sure (which was adopted in RFC 9325 [67]) was to strictly verify
ALPN and SNI strings and fail on the server side if a mismatch
is detected. Especially strict ALPN verification was supposed to
ensure that both parties actually speak the same application layer
protocol, meaning that the most severe form of confusion would be
prevented, as the semantics of the protocol are at least preserved.

However, the ALPACA attack and the proposed countermeasures
did not account for subtle differences in the way opportunistic TLS
was integrated into many application-layer protocols. Protocols
using opportunistic TLS use the same ALPN identifiers as implicit
TLS variants, but sometimes behave slightly differently after a
TLS handshake, making it formally a different application-layer
protocol.

This allows the Opossum attack to still perform a ’cross’-protocol
attack, similarly to ALPACA, where both endpoints are using dif-
ferent variants of the same application protocol, which in turn

Client ServerAttacker

Negotiate
opportunistic TLS Client Hello

REQ1 MSG1

REQ2 RESP1

TLS Handshake

Figure 3: Desynchronization attack in the I2O scenario. Dif-
ferent line types denote unidirectional TLS channels.

influences the exchanged application data messages between the
endpoints.

This formal weakness is present in many protocols that support
opportunistic TLS, and as we will demonstrate in section 4, can be
leveraged to construct fully functional exploits for HTTP.

3.2 Attack Scenarios
For the attack, we consider two scenarios where client and server
will end up using different invocation mechanisms for TLS: The
clientwill use implicit TLS and the server opportunistic TLS (I2O, Fig-
ure 3), and vice versa (O2I Figure 4). To keep the attack scenarios
focused on practically relevant scenarios, we only consider synchro-
nous protocols. A synchronous protocol requires that responses
arrive in the same order as the requests were sent. This description
applies to many popular text-based protocols, such as HTTP 1.0/1.1,
SMTP, POP3, and FTP.

Implicit-to-Opportunistic (I2O). In Figure 3, the client invokes a
TLS handshake by sending the ClientHellomessage, with the intent
to connect to the implicit TLS endpoint on the server. The MitM
attacker delays this message and establishes a TCP connection to
the opportunistic endpoint of the TLS server. The attacker then
requests an upgrade to TLS (opportunistic). After the server has
accepted this request, the attacker forwards the delayed ClientHello
and all other handshake messages unaltered between the client and
server. Since TLS establishes two separate unidirectional channels,
the attacker may delay the forwarding of 𝑅𝐸𝑆𝑃1 until they have
received (and blocked) 𝑅𝐸𝑄2 from the legitimate client. So the client
receives an unexpected 𝑀𝑆𝐺1 to its 𝑅𝐸𝑄1. Since the client was
expecting to receive the response to its request, the client interprets
𝑀𝑆𝐺1 as 𝑅𝐸𝑆𝑃1, and, if the connection continues, 𝑅𝐸𝑆𝑃1 as 𝑅𝐸𝑆𝑃2,
and so on, causing a desynchronization of the connection. Of all the
protocols analyzed in this paper, HTTP is the only protocol that
falls into this category.

Opportunistic-to-Implicit (O2I). In the protocols that fit Figure 4,
the client typically expects a greeting from the server after the TCP
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Client ServerAttacker

Negotiate
opportunistic TLS 

Client Hello

REQ1 MSG1

REQ2 RESP1

TLS Handshake

Figure 4: Desynchronization attack in the O2I scenario. Dif-
ferent line types denote unidirectional TLS channels.

connection has been established. This may be some status message
like “220 example.org SMTP server ready” in SMTP. While the
connection is still plaintext, the attacker can act as the server and
send banner messages or other required protocol-compliant mes-
sages to negotiate the usage of opportunistic TLS. Once negotiated,
the client starts the TLS handshake, and just as in the I2O example,
the attacker simply forwards the messages between the client and
the (this time implicit) TLS server, translating between the ports.
Once the connection is established, the client continues to use the
application and sends a 𝑅𝐸𝑄1. The server, which thinks that it is
part of a regular implicit TLS connection, sends𝑀𝑆𝐺1, which is the
welcome message of the implicit connection. Just like in the I2O
example, this creates a situation where both parties are sending a
message at the same time. This causes the client to treat𝑀𝑆𝐺1 as
the response to 𝑅𝐸𝑄1. This O2I attack scenario applies to protocols
like FTP, LMTP, NNTP, POP3, and SMTP.

Please note that in both Figure 3 and Figure 4, the attacker can
repeat the process of delaying responses from the server indefinitely
until either the client or the server stops responding.

3.3 Applicability
We investigated different synchronous protocols regarding their
support for both implicit and opportunistic TLS (Table 1). Protocols
like MySQL, NBD, and XMPP, which only support opportunistic
TLS, were excluded from further study. For the remaining protocols,
we studied the protocol flow in the specifications. For some proto-
cols (IRC, LDAP, RDP, Managed Sieve, PostgreSQL) the Oppossum
attack does not apply, as the protocol flow after the TLS handshake
is the same for both implicit and opportunistic TLS.

For the seven remaining protocols from Table 1, we identified
discrepancies on the application layer after an implicit and oppor-
tunistic connection. We verified these discrepancies by providing a
Proof-of-Concept (PoC) with a single client implementation and a
single server implementation (provided as artifacts).

We could verify that the PoCs for all seven protocols selected for
verification worked, and that indeed, both parties tried to send the

first message after the TLS handshake. For one protocol, HTTP 1.1,
we went further and built several exploits. Five more protocols are
classified as affected in Table 1. We mark a protocol as affected
when the protocol after the TLS workflow is different, as it allows
an attacker to influence the exchanged message beyond what it
should be able to. However, we did not investigate exploit strate-
gies for these protocols and merely stated that a desynchronization
is possible. IMAP is in a separate category since it is technically
affected but not a synchronous protocol. Instead, requests and re-
sponses are tagged with a unique identifier, and responses can be
returned in any order. It suffers from the weakness but cannot be
desynchronized.

Our practical exploitation of HTTP 1.1 is described in detail
in section 4. These exploits follow the I2O attack (Figure 3). For
HTTP servers, we investigate the support for opportunistic TLS;
the results are given in subsection 4.2. Other protocols are further
studied in section 5.

4 HTTPS Desynchronization with Upgrade
Headers

The HTTP 1.1 protocol is a synchronous protocol, where the client
sends the first message. When using implicit TLS, the client still
sends the first message after the TLS handshake. However, when
using the opportunistic variant, the server sends the first message
after the TLS handshake. The attacker can trigger opportunistic
TLS by sending an Upgrade: TLS/1.0 HTTP header (cf. Figure 1).
This corresponds to the I2O scenario presented in Figure 3 and
does not require the client to support opportunistic TLS. In contrast
to other protocols analyzed in this paper, HTTP uniquely allows
the attacker to partially control the message the server sends after
the TLS handshake by choosing a malicious plaintext request. In
this section, we explore how an attacker can take advantage of a
desynchronization in HTTP caused by the Opossum attack.

4.1 Man-in-the-Browser (MitB)
For the attacks on HTTP, we consider the same attacker model as
for the general Opossum attack (section 3). Additionally, in some
cases, we also assume a Man-in-the-Browser (MitB) attacker model,
where the attacker can additionally execute JavaScript code outside
the targeted website’s scope. This attacker model is frequently
considered in the context of TLS attacks [26, 47, 63, 70].

4.2 Software Supporting Opportunistic HTTP
We manually searched the Internet for software that supports op-
portunistic HTTP and is thus susceptible to our attack. Our process
included examining GitHub repositories and project sites, review-
ing official documentation, and analyzing server headers from our
HTTP study (section 6). In the following sections, we list and de-
scribe the various tools and libraries we identified that implement
opportunistic TLS.

4.2.1 Apache. The Apache webserver [1] supports opportunistic
HTTP since version 2.1 from 2005. To enable it, a user has to set
the parameter SSLEngine optional.2 Apache’s implementation
behaves non-standard conformwhen facing HTTP requests with an

2https://httpd.apache.org/docs/2.4/mod/mod_ssl.html
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upgrade header with a non-zero content length. RFC 2817 expects
the whole initial request to be sent in plaintext, while Apache
expects only the header of the request to be sent in plaintext, with
the body of the request being sent encrypted before the server sends
the response. The problem with this behavior is that it assumes
that the client will already know that the upgrade will be successful
when it sends the HTTP header to trigger the upgrade, as the client
must hold back the payload of the request to send it afterward.
However, a server that does not support or accept the upgrade will
not initiate the switching to another protocol but will instead wait
for the body of the request, resulting in a deadlock. While on the
surface, encrypting the POST data seems more secure, it actually
results in a much more severe desynchronization, as we show in
subsection 4.4 and Figure 5.

4.2.2 Printer. CUPS, a popular Unix application for printing ser-
vices, supports the Internet Printing Protocol (IPP), for which CUPS
always supports opportunistic and implicit TLS. Neither opportunis-
tic nor implicit TLS can be disabled.3 The CUPS server ignores any
other HTTP headers from HTTP upgrade requests and, therefore,
does not consider the content length that is provided.

PAPPL [13] is a simple C-based framework for developing CUPS
printer applications. PAPPL supports HTTP-to-TLS upgrade as a
client. Based on PAPPL or CUPS, a lot of printer applications also
support opportunistic TLS, including LPrint [11], HP [7], HPLIP [8],
Gutenprint [6], Ghostscript [5], and PostScript [15].

4.2.3 HttpClient 5. HttpClient is a component of the Apache Http-
Components project that provides a powerful HTTP client library. It
supports an HTTP-to-TLS upgrade on the client side. In earlier ver-
sions, this upgrade feature was enabled by default. However, with
version 5.4, the upgrade functionality has to be enabled explicitly.4

4.2.4 Icecast. Icecast is an open-source streaming media server.
The Icecast-Server [9] also supports5 opportunistic HTTP on the
server side, while the Libshout library [10] implements opportunis-
tic HTTP on the client side.

4.2.5 Cyrus IMAP. Cyrus [3] is an email, contacts, and calendar
server that implements a limited HTTP server (called httpd6) to
support CalDAV, CardDAV, and WebDAV. This HTTP server imple-
ments opportunistic HTTP upgrades when TLS is enabled.

4.3 Impact Analysis
The impact of the attack is comparable to the Renegotiation at-
tack [58, 62] on TLS, which allows the attacker to choose an arbi-
trary prefix for the stream of the client. In contrast, in the Opossum
attack, the attacker cannot choose an arbitrary prefix but has to
choose a complete HTTP request as a prefix. The attacker also
cannot send incomplete messages, which makes the attack strictly
weaker. Nevertheless, this still allows for multiple exploit avenues.

We developed PoC exploits of all the mentioned attacks, which
are publicly availablewith our artifacts at https://github.com/kunte0/
Opossum-Attack-PoC.

3https://www.cups.org/doc/encryption.html
4https://issues.apache.org/jira/browse/HTTPCLIENT-2344
5https://wiki.xiph.org/Icecast_Server/known_https_restrictions
6https://www.cyrusimap.org/imap/reference/manpages/systemcommands/httpd.
html

4.3.1 Resource Confusion. The first attack goal is to confuse the
user at the application layer, as described in Figure 1. This attack
allows for changing the content delivered to the user. In Figure 1,
the user retrieves a dog response instead of a cat. An attacker could
replace images or executable file downloads with other images or
files hosted on the same server. The real attack impact may vary.
For example, the attack could also replace a JavaScript source file,
potentially downgrading the version of a JS library. This can have
further security implications, as the attacker can abuse this to pre-
vent security-critical JavaScript libraries, such as DOMPurify [38],
from functioning correctly.

PoC – Cat-Dog Example with Apache. We implemented the ba-
sic resource confusion attack from Figure 1. When requesting
cat.html, a victim is served dog.html instead.

4.3.2 Session Fixation. With Opossum, it is possible to perform
a session fixation attack. By logging in with attacker-controlled
credentials in the first request, the server will answer by setting a
cookie to the attacker’s session. This causes the client to receive
and store the cookie. The client includes the cookies in subsequent
connections, logging them into a session under the attacker’s cre-
dentials.

PoC – Anti-CSRF Token Fixation in CUPS. We implemented a PoC
attack against CUPS that exploits the Opossum attack to force a
specific anti-CSRF cookie into a client. This enables CSRF attacks
against the admin interface in CUPS.

4.3.3 Reflected-XSS. The Opossum attack amplifies the attack sur-
face of Reflected-XSS vulnerabilities. Usually, Reflected-XSS in-
volves the user clicking on a specifically crafted link that triggers
the vulnerability and includes the payload. As the attacker can
control the request, they can trigger the vulnerability in the first
request, causing the client to receive the response containing the
JavaScript payload. The client will then execute the payload in the
context of the attacked website. Further, a user-clickable link can
only cause a GET request and the attacker cannot change the HTTP
headers. With Opossum, the attacker can also exploit vulnerabili-
ties that require a different method (e.g., POST) or specific HTTP
headers, which may usually not be exploitable.

PoC – Exploiting Range Headers for XSS. Servers that support
the HTTP Range request header [32] (e.g., Apache) allow clients to
request specific parts of a response. In the PoC, we use the range
header in the TLS upgrade request to extract a commented-out
script tag from a response, leading to XSS. Additionally, it is possi-
ble to request multiple ranges, which may allow an attacker to craft
nearly arbitrary responses. However, when multiple ranges are re-
quested, Apache sets the content-type to multipart/byteranges,
a format that in all modern browsers will trigger a download and
not render.

4.4 Software-Specific Issues
Since Apache expects the request body of the request that initi-
ates the upgrade to be sent after the TLS handshake, an even more
powerful desynchronization attack is possible (Figure 5), that is no
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longer bound by the message boundaries but instead desynchro-
nizes requests completely, leading to a request smuggling attack7.
To perform the attack, the attacker uses the Opossum attack but also
specifies a content length in the original HTTP upgrade request.
When performing the Opossum attack, from the server’s perspec-
tive, the first request from the implicit client will be interpreted as
the body of the attacker’s request. More severely, the remaining
data of the client’s request will be interpreted by the server as the
subsequent incoming HTTP request. In a MitB attacker model, the
attacker can control the request body of the client and include the
headers of yet another HTTP request to gain full control of the
desynchronization. The attacker can then use this request to again
contain the body of the next victim request as the body, this time
with an attacker-controlled prefix. This, for example, allows the
attacker to perform a POST request of a client request to any re-
source, which in many applications allows the attacker to steal the
cookie.

We also tested CUPS, Icecast, and Cyrus IMAP for this behav-
ior, but all of them handle upgrade requests with content length
differently than Apache. CUPS ignores the content length. Icecast
and Cyrus IMAP only finish the upgrade request after receiving
enough POST data.

PoC – Apache Request Body Desynchronization Leaks Cookie. We
implemented this attack as a PoC, as seen in Figure 5. In this PoC, we
assume an HTTP application that uses cookies with the HttpOnly
and secure flags enabled. These flags prevent an attacker from ac-
cessing the cookies via JavaScript or through insecure connections.
Additionally, we assume that the web application provides a feature
that allows users to submit POST data to a location accessible by
the attacker. For this purpose, we implemented a basic product
comment feature for our PoC.

The attack starts by visiting an attacker-controlled website, unre-
lated (cross-site) to the server we are attacking. The website issues
a form POST request (Request 1 in Figure 5) over HTTPS to the tar-
get server. At this point, the MitM attacker performs our Opossum
attack but specifies a content length in the upgrade request. Follow-
ing the TLS upgrade, the Apache server misinterprets the HTTP
body of Request 1 as POST data for the upgrade request, resulting in
desynchronization. The POST body of Request 1 is now treated as
a request. Since the attacker can freely control any headers in this
request, they can set an overlong content length to exfiltrate the
next request issued by the browser. In our experiments, we found
that both Chrome and Firefox will reuse the connection for any
subsequent subresource requests (e.g., favicons, scripts, images),
triggered by the response of the upgrade request. In our PoC, the
browser automatically issues a favicon request, which, because it
is a same-origin request, carries all cookies, regardless of modern
cookie restrictions. Because of the desynchronization, the raw fav-
icon request is posted as a comment with the attacker’s session
(Server POV Request 2 in Figure 5), which leaks the cookies.

In our PoC we had to add padding to Request 1, to fill one entire
TLS record (214 bytes), so that the first record sent by the browser
contains a complete request. In the MitM attacker script, we then
split and delay every TLS record received, which allows Apache to
respond to the first request. Otherwise, Request 1 would not finish
7https://cwe.mitre.org/data/definitions/444.html

successfully in the browser, and the connection could not be reused.
For simplicity, we do not show this in Figure 5.

5 Opossum Attack on Protocols Beyond HTTP
As mentioned in section 3, the Opossum attack affects any synchro-
nous protocol that uses opportunistic and implicit TLS simultane-
ously and differs in the application protocol after the TLS handshake.
In the protocols we explore in this paper, the observed difference
is the communication order after the TLS handshake. If the peer
who sends the first message after the handshake changes in the two
variants, we consider the protocol to be affected by the Opossum
attack. Due to the large number of TLS-based protocols, we do not
provide a detailed exploitability analysis of all affected protocols.
However, we believe the impact on these protocols is likely much
lower than on HTTP. This is partly due to the MitB attacker model,
which is usually not available in other protocols, but also due to
how opportunistic TLS was integrated into HTTP. In HTTP, the
attacker can send a custom request, and the victim client receives the
response to that request as their response. In many other protocols,
the attacker can merely desynchronize with a message they have
little control over (e.g., a banner message), which makes chaining a
full exploit together hard, if not impossible. While we cannot show
a practical exploit beyond a Proof-of-Concept for desynchroniza-
tion, affected protocols give a Man-in-the-Middle attacker more
capabilities than expected to influence the exchanged messages
(and their interpretation). Table 1 summarizes the protocols we
investigated in this work. In addition to HTTP, we investigated 14
protocols that support opportunistic TLS. Our selection includes
common email and messaging protocols, protocols used for data-
base access, and those for remote access or file transfer. For each
of these protocols, we evaluated their support for implicit TLS and
whether it is susceptible to the Opossum attack.

5.1 Additionally Affected Protocols
FTP. The File Transport Protocol (FTP) supports implicit and

opportunistic TLS (via STARTTLS) [35]. While implicit TLS was
never officially specified for FTP, it is still commonly implemented.
For implicit TLS, the server is the first to send a message after the
TLS handshake, while for opportunistic TLS, the client is the first
to send a message [35]. When performing the Opossum attack O2I,
the client will receive the FTP banner as the response to its first
request after the TLS handshake. The FTP banner contains a 220
response code. How the client reacts to this is application-specific.
If the client accepts this response code as a valid response to its
first message after the TLS handshake, the desynchronization may
continue. We visualize the behavior in Figure 6.

IMAP. In IMAP, both opportunistic and implicit TLS are sup-
ported [40, 51]. However, in contrast to all other analyzed proto-
cols, IMAP is not a synchronous protocol. Instead, request-response
pairs are matched by a tag chosen by the client. It is still possible
to mix implicit and opportunistic TLS (O2I) to perform a ‘prefix’
injection into the channel, which should not be possible in a se-
cure channel. However, the prefix that can be injected is only the
Banner, which is an untagged response. We thus conclude that a
desynchronization with the Opossum attack is not possible.

8

https://cwe.mitre.org/data/definitions/444.html


Opossum Attack: Application Layer Desynchronization using Opportunistic TLS

Se
rv

er
 P

O
V 

R
eq

ue
st

 2

MitB Browser
:443

MitM

SubmitForm(
action="https://server.com/fake",

method="POST",
 
data="POST /comments HTTP/1.1
Content-Length: 83
Cookie=<Attacker Session>

name=exfil&msg=")

ClientHello

POST /void HTTP/1.1
Host: server.com
Upgrade: TLS/1.0

Connection: Upgrade
Content-Length: 55

HTTP/1.1 101 Switching Protocols

Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

HTTP/1.1 404 Not Found

Se
rv

er
 P

O
V 

R
eq

ue
st

 1

Server
:80

R
eq

ue
st

 1
R

eq
ue

st
 2 GET /favicon.ico HTTP/1.1

Host: server.com
Cookie: <Browser Session>

GET /favicon.ico HTTP/1.1

Host: server.com
Cookie: <Browser Session>

POST /void HTTP/1.1
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Content-Length: 86

POST /comments HTTP/1.1
Cookie=<Attacker Session>
Content-Length: 83

name=exfil&msg=

TLS Handshake

Figure 5: Sketch of an exploit for the HTTP POST behavior of Apache/2.4.62 (without padding). When upgrading a plain
connection to TLS, Apache expects the request body to be sent through TLS. An attacker can abuse this, causing the request
(Request 1) of a victim to be misinterpreted as a request body. In the MitB/MitM-attacker model, an attacker can further abuse
this to prefix a second request (Request 2) with attacker-controlled data. This enables an attacker to use all cookies a victim
sends (including HttpOnly and Secure) as HTTP post data, possibly disclosing them to the attacker (e.g., via posting a comment).
We highlight attacker controllable request fields in red and lines defining the request (method, path, length) in bold. Green
arrows denote messages sent and protected via TLS.

SMTP. The Simple Mail Transfer Protocol (SMTP) supports op-
portunistic and implicit TLS [40, 48]. After the handshake in an
implicit TLS connection, the SMTP server sends a banner with a 220
status code, while in an opportunistic TLS connection, the server
is waiting for a command from the client, which makes SMTP vul-
nerable in the O2I scenario. This allows an attacker to forward an
opportunistic client to an implicit server, allowing the attacker to
forward the server banner in response to the first request.

POP3. Similarly, the Post Office Protocol 3 (POP3) supports op-
portunistic and implicit TLS [40, 51]. Regarding the Opossum attack,
POP3 behaves analogously to SMTP (O2I).

LMTP. The Local Mail Transfer Protocol (LMTP) is a mail trans-
fer protocol similar to SMTP but designed for local message deliv-
ery. Regarding the Opossum attack, LMTP behaves analogously to
SMTP (O2I).

NNTP. The Network News Transfer Protocol (NNTP) is a pro-
tocol that transfers Usenet messages from a client to a server
or between servers. It supports both opportunistic and implicit
TLS [29, 49]. Regarding the Opossum attack, NNTP behaves analo-
gously to SMTP (O2I).

Proof of Concepts. We validated the descriptions of both implicit
and opportunistic TLS for the susceptible protocols by deploying a
client and server for each protocol locally. Specifically, for SMTP,
POP3, and IMAP, we used an Apache James [2] server. For LMTP,
we used a Dovecot [4] server, and for FTP a ProFTPD [16] server.
On the client side, we implemented a Python script that establishes
a connection to a server using the official Python module for that
protocol. By observing the connection, we can confirm the described
desynchronization.

5.2 Protocols Not Affected
The following protocols are not affected by a desynchronization
of the Opossum attack because they only support opportunistic
TLS, or they behave equally on the application layer when using
implicit and opportunistic TLS.

Tunneled Protocols. It is possible to create scenarios where im-
plicit TLS is transparently added to protocols that otherwise do
not support it by adding a transparent TLS proxy in front of them.
This could make protocols that only support opportunistic TLS also
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Table 1: Summary of our evaluation of various protocols in
the context of the Opossum attack. The last column indicates
if a protocol is susceptible or vulnerable to an attack scenario.
To be susceptible, protocols need to offer both implicit and
opportunistic TLS, and the direction of the first application
data (sent by client or by server) must differ between the
two modes. For MySQL, NBD, and XMPP, there is no implicit
mode. IMAP is only theoretically affected, as IMAP is not a
synchronized protocol, it cannot be desynchronized.

TLS

Protocol Implicit Opportunistic Impact

FTP
𝑆←− 𝐶−→ , O2I

HTTP 1.1
𝐶−→ 𝑆←− W I2O

IMAP
𝑆←− 𝐶−→ (,) O2I

IRC
𝐶−→ 𝐶−→

LDAP
𝐶−→ 𝐶−→

LMTP
𝑆←− 𝐶−→ , O2I

Managed Sieve
𝑆←− 𝑆←−

NNTP
𝑆←− 𝐶−→ , O2I

POP3
𝑆←− 𝐶−→ , O2I

PostgreSQL
𝐶−→ 𝐶−→

RDP
𝐶−→ 𝐶−→

SMTP
𝑆←− 𝐶−→ , O2I

MySQL
𝐶−→

NBD
𝐶−→

XMPP
𝐶−→

, Affected W Exploit shown
𝐶−→ First AppData from client

𝑆←− First AppData from server
O2I Opportunistic to implicit scenario
I2O Implicit to opportunistic scenario

vulnerable to the Opossum attack if they are deployed alongside a
tunneled implicit variant.

MySQL. MySQL is an open-source relational database manage-
ment system. It can be configured to use TLS and supports oppor-
tunistic TLS. However, it is impossible to configure it to use implicit
TLS, preventing the confusion. If implicit TLS is provided with TLS
proxies, confusion would be possible. An attacker could forward
an opportunistic client to an implicit server, allowing the attacker
to forward the Server Greeting in response to the first request.

NBD. The Network Block Device (NBD) protocol enables remote
access to block storage devices, such as hard disks. Like MySQL,
it supports opportunistic TLS but does not support implicit TLS,
which prevents confusion. If implicit TLS is provided with TLS
proxies, confusion would be possible. An attacker could forward
an opportunistic client to an implicit server, allowing the attacker
to forward the server’s initial NBD handshake message in response
to the first request.

PostgreSQL. Analog to MySQL, PostgreSQL is also an open-
source relational database management system. It can be configured
to use TLS and supports implicit and opportunistic TLS. Before and
after the TLS handshake, the client is always expected to send the
first message, preventing a desynchronization.

LDAP. The Lightweight Directory Access Protocol (LDAP) is
a protocol for interacting with distributed directory services. It
supports both implicit and opportunistic TLS [66]. Analog to Post-
greSQL, before and after the TLS handshake, the client is always
expected to send the first message, preventing desynchronization.

RDP. The Remote Desktop Protocol (RDP) is a proprietary proto-
col developed by Microsoft that lets users access another computer
over a network connection. It supports both implicit TLS and op-
portunistic TLS. Analog to PostgreSQL, before and after the TLS
handshake, the client is always expected to send the first message,
preventing desynchronization.

IRC. The Internet Relay Chat (IRC) is a text-based communi-
cation protocol that supports implicit TLS and opportunistic TLS.
However, the IRCv3 Working Group has deprecated opportunistic
TLS to encourage IRC networks to adopt implicit TLS exclusively.
Analog to PostgreSQL, before and after the TLS handshake, the
client is always expected to send the first message, preventing
desynchronization.

Managed Sieve. The Managed Sieve protocol is a protocol that
manages email filtering rules remotely. It supports both opportunis-
tic and implicit TLS [46]. Before and after the TLS handshake, the
server always sends the first message, preventing a desynchroniza-
tion.

XMPP. The Extensible Messaging and Presence Protocol (XMPP)
is an XML-based communication protocol that supports oppor-
tunistic TLS but does not support implicit TLS, which prevents
confusion.

6 Large-Scale Internet Study
To assess the prevalence of susceptibility to the Opossum attack,
we conducted Internet-wide scans. Since it is unclear where HTTP
with opportunistic TLS is deployed, we scanned all ports for which
the Shodan8 search engine returned at least one million hits for
“HTTP”. In total, Shodan identified 31 ports with over one million
hits. Additionally, based on specific RFCs [30, 53, 69], we included
four more ports where HTTP servers with opportunistic TLS might
be present.

For each port, we first performed a TCP-SYN scan using ZMap
[28]. Then we scanned the resulting hosts with ZGrab2 [27] by
sending an HTTP request that attempts to upgrade the connection
to TLS using the Upgrade header. Since we expected negotiation
issues, we tested each TLS version individually by sending separate
HTTP requests for each TLS version in the Upgrade header.

6.1 HTTP Results
In total, we evaluated 327,767,219 servers distributed over 35 ports.
Among these, 36,788 replied with an HTTP 101 code indicating

8https://www.shodan.io
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support for our requested upgrade and 33,274 specifically signaled
TLS support through the Upgrade header field. We analyzed all
hosts that initially responded with an HTTP 101 code and found
that 20,121 responded to TLS handshake messages sent after the
upgrade request. Below, we provide further details on the response
patterns we observed in our additional scans. An overview of the
results for each port is shown in Table 2.

Table 2: Results of our scan for support of opportunistic
HTTP. We found 36,788 servers that advertise support for
opportunistic TLS, with 20,121 showing evidence that they
actually support it.

Port IPs1
HTTP

Upgrade2
TLS

Upgrade3
Speaks
TLS4

80 54,546,240 4,168 3,185 2,399
443 53,373,461 567 472 46
7547 38,621,425 388 388 0
8443 10,338,350 454 441 11
8089 9,930,896 438 419 4
8080 9,894,096 1,665 1,146 753
21 9,766,232 307 307 0

8085 9,689,861 416 402 12
7170 8,360,836 189 189 0
4567 8,189,361 403 403 1
8000 7,577,744 512 512 80
8008 6,803,053 387 387 16
9000 6,399,101 303 295 3
8081 5,454,634 465 446 49
2082 5,244,141 774 308 0
2087 5,211,866 281 281 0
2083 5,191,865 294 291 0
2086 5,128,245 829 252 0
8888 4,902,448 267 260 10
1024 4,649,290 218 218 2
8880 4,462,136 594 176 3
9080 4,428,670 309 298 58
5985 4,417,712 227 227 0
3000 4,329,660 262 262 1
5001 4,227,576 256 256 3
8001 4,223,223 348 336 14
5000 4,123,893 209 209 2
81 4,119,701 238 238 21

8090 4,047,896 348 336 14
3128 3,877,703 246 246 0
7777 3,835,388 307 307 0
9100 3,366,261 532 525 6
631 3,218,160 19,006 18,666 16,618
1344 3,154,290 300 300 1
702 2,661,805 314 314 1∑

327,767,219 36,788 33,274 20,121
1: Unique IPs that responded successfully to a TCP SYN.

2: Unique IPs that responded with an HTTP 101.

3: Unique IPs that responded with an HTTP 101 and an Upgrade header for TLS.

4: Unique IPs that responded with a ServerHello / Alert to our ClientHello.

Associated HTTPS Servers. To find a lower bound for the impact
of the desynchronization attack, we extracted domain names from

received X.509 certificates and tested the domains for HTTPS sup-
port on port 443. While most servers provided certificates scoped
to local domains or preset certificates without any listed domains,
we could extract 5,872 valid domain names. We found that 2,268
(38.6%) of these domains also support implicit TLS on port 443 and
539 (9.2%) protect HTTPS traffic with a certificate that is also valid
for the web server offering opportunistic TLS, which ultimately
enables the Opossum attack.

Unexpected SSH Responses to TLS Upgrade Requests. During our
scan, we observed that not all hosts that sent an HTTP 101 Switching
Protocols response proceeded with a TLS handshake. Instead, 2,556
servers (6.9%) responded with either an SSH banner or an SSH Key
Exchange Init message.

Reflected Upgrade Headers. Table 2 shows that on all ports except
for 80 and 631, most servers did not proceed with the TLS hand-
shake, despite signaling TLS support in the 101 HTTP response. We
further tested these servers and found that the majority echo the
content of our Upgrade header and immediately close the connec-
tion after sending the 101 response.We assume these areWebSocket
servers because sending a request to upgrade HTTP to WebSocket,
rather than TLS, yielded additional WebSocket-related headers in
the 101 responses and kept the TCP connection alive.

TLS Upgrades Without Upgrade Header. 3,477 servers supported
TLS even though their HTTP 101 response did not include the
Upgrade header indicating any TLS protocol version.

Observed Server Headers. During our analysis, we also examined
the Server headers returned by hosts that support the TLS upgrade.
If present, this header indicates the server software used and the
version used. Most hosts did not send a Server header. Among
those that did, the headers contained different versions of Apache,
CUPS, IPP, PAPPL, and Icecast.

6.2 Results for FTP, IMAP, POP3, and SMTP
In addition to HTTP, we also examined a set of susceptible protocols,
including FTP, IMAP, POP3, and SMTP. For these (currently) non-
exploitable protocols, we used the same approach as in our HTTP
study. For each protocol, we scanned the ports used for implicit TLS
and those used for opportunistic TLS. First, we performed a TCP-
SYN scan with ZMap to identify hosts responding to the relevant
ports. Then, we used ZGrab2 with the existing modules to check
for implicit and opportunistic TLS support. Table 3 summarizes the
results.

For FTP, 2M servers support opportunistic TLS, while only about
115k support implicit TLS. For both IMAP and POP3, the number of
servers supporting implicit and opportunistic TLS was similar. In
contrast, for SMTP, we found twice as many servers with implicit
TLS support as with opportunistic TLS.

We also evaluated how many hosts support implicit and oppor-
tunistic TLS and present a certificate with the same hostname. This
allowed us to assess the relevance of the Opossum attack for each
protocol. Our analysis shows that most IMAP and POP3 servers are
susceptible to the Opossum attack, with less prevalence in SMTP.
For FTP, we see that opportunistic TLS is dominant, with the lack
of implicit TLS preventing the attack. In FTP, only the opportunistic
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Table 3: Results of our scan for implicit and opportunistic
TLS support in FTP, IMAP, POP3, and SMTP. The last column
shows that many of these hosts are susceptible to the Opos-
sum attack.

TLS

Protocol Implicit Opportunistic Susceptible

FTP1 115,799 2,083,439 219,200
IMAP2 1,778,397 1,679,746 1,473,974
POP33 1,493,423 1,327,032 1,139,443
SMTP4 969,709 420,927 243,153
1: Scanned port: 990 and 21 3: Scanned port: 995 and 110

2: Scanned port: 993 and 143 4: Scanned port: 465 and 587

TLS variant is officially standardized. While the implicit variant is
considered more secure, there is no official RFC for implicit TLS for
FTP, which may explain the observed difference.

7 Mitigation
We attribute the core reason for the Opossum attack to the authen-
tication flaw from the ALPACA attack [18].

For the Opossum attack, strict ALPN verification does not work,
as both protocols (implicit and opportunistic TLS) are using the
same ALPN identifier. However, in affected protocols, from a the-
oretical modeling perspective, the protocol after an opportunistic
upgrade and the protocol after an implicit TLS are two different
application layer protocols. The two protocols are identical but
shifted by the initial message, which creates the desynchronization.

It is possible to fix the Opossum attack similarly to the ALPACA
attack [18]. By introducing a special ALPN string for the opportunis-
tic protocol, implementing it into respective clients, and enforcing
it on the server side, one could prevent the attack, as the server
could then distinguish opportunistic TLS from implicit TLS. How-
ever, adding additional TLS extensions or ALPN strings to already
deployed implementations is a slow process, and it is unlikely that
such patches will reach implementations in significant numbers.

A broader fix for our attacks requires coordination between im-
plementations to fix the issue, as it exploits standard-compliant
behavior. Opportunistic TLS is known to weaken the security of
email protocols [55]. With the Opossum attack, we can additionally
show that many protocols using opportunistic TLS are suffering
from the Opossum attack. Our preferred solution to the Opossum
attack is the deprecation of all opportunistic TLS protocols. Upgrad-
ing software to implicit TLS is typically easy for developers to do
and is, for the most part, application-independent. However, this
requires that some protocols need to standardize implicit TLS, in-
cluding protocols like FTP, MySQL, NBD, and XMPP, which may
face resistance.

Regarding HTTP, we present practical exploits, but found only
a small number of potentially affected servers in the wild. Since
HTTP-to-TLS upgrades are an esoteric feature that does not really
have a place in the modern HTTP ecosystem, we think that depre-
cating the feature is the best way forward. It is unlikely that other
countermeasures will reach broad adoption, as proper countermea-
sures require integration on both ends.

8 Related Work
A pillar in opportunistic encryption is RFC 7435 [24], which intro-
duces the principles of Opportunistic Security design. The docu-
ment gives insights and guidance on the use of opportunistic en-
cryption and authentication. The document is related to DANE [25],
which defines an (opportunistic) DNS-based alternative to tradi-
tional PKI. An oversight in opportunistic security standards is that
the security considerations did not account for attacks where oppor-
tunistic security would compromise implicit variants, as exploited
in the Opossum attack.

Poddebniak et al. [55] analyzed the security of STARTTLS im-
plementations in the context of SMTP, POP3 and IMAP, and found
plaintext injection attacks caused by bugs in the respective imple-
mentations. Using these bugs in opportunistic TLS, Poddebniak et
al. then presented an attack where they used the plaintext injec-
tion vulnerabilities to attack implicit TLS clients (I2O), showing
that simply providing opportunistic TLS alongside implicit TLS can
reduce the security of the implicit variant.

The Opossum exploit on HTTP is related to the TLS Renego-
tiation attack [58], which allows for arbitrary prefix injection. In
contrast to the Renegotiation attack, the Opossum attack does not
allow for an arbitrary prefix but only allows for the injection of
full HTTP requests. The Renegotiation attack was mitigated by the
introduction of the Renegotiation Indication extension [62].

In the context of HTTP, desynchronization attacks by request
smuggling have been studied by James Kettle.9 HTTP request smug-
gling exploits inconsistencies in how front-end and back-end sys-
tems process HTTP headers, particularly Content-Length and
Transfer-Encoding. By crafting an ambiguous request, an attacker
can desynchronize the front-end and back-end servers, enabling
them to “smuggle” malicious data.

Canetti and Krawczyk have formally analyzed channel security
of key exchange protocols [19]. For the TLS record layer, Paterson
et al. [54] define stateful length-hiding authenticated encryption
(sLHAE). Based on this, [42, 45] analyze the TLS handshake and
record layer using the framework of authenticated and confidential
channel establishment (ACCE). A more general approach is given
by Fischlin et al. [34], who define plaintext integrity (INT-PST) for
arbitrary data streams. Our work shows that HTTPS Upgrade does
not provide integrity of plaintext (INT-PST) as defined by Fischlin
et al. [34].

9 Conclusions
In this work, we have shown that deploying opportunistic TLS
alongside implicit TLS can cause desynchronization vulnerabilities
in many application protocols, including HTTP 1.1, FTP, IMAP,
SMTP, LMTP, NNTP, and POP3. We then showed how this desyn-
chronization vulnerability, in the case of HTTP 1.1, can lead to
full exploits, even if the feature was never implemented in mod-
ern browsers. While we did not show practical exploits for other
vulnerable application layer protocols, the Opossum attack gives

9https://portswigger.net/research/http-desync-attacks-request-smuggling-
reborn,https://portswigger.net/research/http-desync-attacks-what-happened-next,
https://portswigger.net/research/breaking-the-chains-on-http-request-smuggler,
https://portswigger.net/research/http2
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attackers capabilities that subvert the expectations of the develop-
ers on the TLS channel, which attackers can potentially exploit on
a case-by-case basis. Our Internet scan shows that, while only a
few HTTPS servers are potentially affected, many email and FTP
servers are susceptible to the general Opossum attack. While the
potential for exploits of non-HTTP protocols is low, the Opossum
attack gives attackers an unexpected technique that might lead to
implementation-specific exploits. The deployment of opportunistic
security measures should never interfere with the strict version of
the protocols. We, therefore, argue that it is time for the community
to take a proactive position and deprecate opportunistic TLS in
all protocols and to consider its deployment as harmful, indepen-
dent of the presence of publicly known exploits for the concrete
implementation and protocol.
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Figure 6: A sketch of the Opossum attack on FTPS. Different
line types denote unidirectional TLS channels.
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